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rob.salguero@biology.ox.ac.uk

ORCID 0000-0002-6085-4433

1 Department of Biological and Environmental Science
University of Jyväskylä

Jyväskylä, Finland

2 Department of Evolutionary Biology and Environmental Studies
University of Zurich
Zurich, Switzerland

3 Institute for Biodiversity and Ecosystem Dynamics
University of Amsterdam

Amsterdam, The Netherlands

4 Department of Zoology
University of Oxford

Oxford, United Kingdom

September 5, 2022

Acknowledgements

RS-G was supported by a NERC Independent Research Fellowship (NE/M018458/1). CdV was
supported by Swiss National Science Foundation grant number 310030B 182836 awarded to Hanna
Kokko, and Academy of Finland grant number 340130 awarded to Jussi Lehtonen.

Author contributions

CdV conceptualised the article with input from CB and RSG, CdV performed analytical mathe-
matical analyses, CB performed analyses in R, all authors contributed to subsequent drafts.

Data accessibility statement

Code used in this paper can be found at https://github.com/Lotte-biology/Keyfitz.

1

charlotte.c.devries@jyu.fi
connor.bernard@biology.ox.ac.uk
rob.salguero@biology.ox.ac.uk
https://github.com/Lotte-biology/Keyfitz


Abstract

Keyfitz’ entropy is a widely used metric to quantify the shape of survivorship of populations, from

plants, to animals, and microbes. Keyfitz’ entropy values < 1 correspond to life histories with an

increasing mortality rate with age (i.e., actuarial senescence), whereas values > 1 correspond to

species with a decreasing mortality rate with age (negative senescence), and a Keyfitz entropy of

exactly 1 corresponds to a constant mortality rate with age. Keyfitz’ entropy was originally defined

using a continuous-time model, and has since been discretised to facilitate its calculation from

discrete-time demographic data. In this short note, we show that the previously used discretisation

of the continuous-time metric does not preserve the relationship with increasing, decreasing, or

constant mortality rates. To resolve this discrepancy, we propose a new discrete-time formula for

Keyfitz’ entropy for age-classified life histories. We show that this new method of discretisation

preserves the relationship with increasing, decreasing, or constant mortality rates. We analyse the

relationship between the original and the new discretisation, and we find that the existing metric

tends to underestimate Keyfitz’ entropy for both short-lived species and long-lived species, thereby

introducing a consistent bias. To conclude, to avoid biases when classifying life histories as (non-

)senescent, we suggest researchers use either the new metric proposed here, or one of the many

previously suggested survivorship shape metrics applicable to discrete-time demographic data such

as Gini coefficient or Hayley’s median.

1 Introduction

Actuarial senescence is defined as the increased risk of dying as an individual gets older (Medawar,

1952). Getting older cannot be avoided in that it is a natural consequence of surviving, but some

species seem to be able to avoid senescing (Vaupel et al., 2004; Jones et al., 2014; Roper et al.,

2021). It is tempting to assume long-lived organisms senesce less than short-lived organisms, but

of course it is possible for an organism to have a constant but high mortality rate over its entire

lifespan, and thus be (relatively) short-lived and negligibly senescent (Péron et al., 2019). For

example, Baudisch (2011) compare 10 animal species and find that robins (Erithacus rubecula)

rank as having the shortest life expectancy while at the same time having the lowest pace of life,

that is, the least senescent survivorship curve (out of this admittedly small sample of 10 animal

species). Likewise, an organism can have an increasing but relatively low mortality rate over its

entire lifespan, and thus be long-lived and senescent. For example, bamboo (Phyllostachys) stands
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rapidly die following a period of relatively low mortality lasting 60-100 years (Janzen, 1976; Finch

& Rose, 1995). Similarly, long-lived semelparous plants such as long-lived Puya raimondii (living

up to 150 years; Finch (1998)) and Agave americana (which often live decades; Harper & White

(1974)) show delayed, but rapid declines in vitality with age.

To disentangle these two dimensions of ageing, namely longevity and the rate of senescence,

demographers typically distinguish between the pace of ageing and the shape of ageing, respectively

(Keyfitz, 1968, 1977; Baudisch, 2011). The pace of life is often quantified through demographic

metrics such as mean life expectancy, reproductive window, or generation time, which tend to

be highly correlated. The pace of ageing behaves intuitively: it is high for short-lived organisms

and low for long-lived organisms. The shape of ageing, on the other hand, is determined by the

time-standardized shape of the mortality or survival curve. The goal of shape metrics is to classify

survival curves by whether the mortality rate mostly increases or decreases with (standardized)

time (respectively, scenescent versus negative senescent curves), see Figure 1 for some examples of

different survivorship curve shapes.

Keyfitz’ entropy is one of the metrics that has been proposed to quantify to shape of ageing

(Keyfitz, 1977; Wrycza et al., 2015) . Keyfitz’ entropy was originally identified as a dimensionless

measure of the elasticity of lifespan to a uniform change in age-specific mortality (Leser, 1955).

Population entropy was later re-derived and popularised by Keyfitz (1977). A similar measure

was introduced through independent proofs by Demetrius, which helped attract interest to the

measure (Demetrius, 1974, 1978). Demetrius (1978) noted the potential use of Keyftiz’ entropy for

the classification of survivorship curves, pointing out that it has the useful property that H = 1

corresponds to a constant mortality rate (type II curve), H < 1 corresponds to mortality increasing

with age (type I curve), and H > 1 corresponds to mortality decreasing with age (type III curve,

see figure 1 for an example of all three curve types).

Salguero-Gómez et al. (2016) introduced a discretized version of Keyfitz entropy that inter-

changes the integral for summation which has been subsequently used in a number of publications

(Salguero-Gómez, 2017; Beckman et al., 2018; Capdevila et al., 2020; Bernard et al., 2020). In this

short note, we show that this approach to discretise Keyfitz entropy does not fully capture the

expected relationship with increasing, decreasing and constant mortality rates of the continuous-

time metric. To resolve this discrepancy, we introduce a different discrete-time version of Keyfitz’

entropy based on previous work on matrix formulas for life disparity (Vaupel & Canudas-Romo,

2003; Keyfitz & Caswell, 2005; Caswell, 2013; Caswell et al., 2018). We show that this alternative
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discretisation does preserve the expected relationship between Keyfitz’ entropy, and whether/how

mortality rates change with age in age-structured matrix population models. We then analyse the

relationship between the two Keyfitz’ metrics to test if any consistent biases might exist. We eval-

uate this relationship empirically using animal and plant matrix population models, as discussed

in more detail below. We find that the two metrics classify survivorship with a similar profile

across values, with a consistent, strong trend toward underestimating entropy values (suggesting

stronger senescence) using the original entropy metric. That is, curves classified as (weakly) neg-

atively senescent by the new entropy metric are likely to be incorrectly classified as senescent by

the original entropy metric, and constant mortality curves are regularly incorrectly classified as

senescent curves by the original entropy metric. In addition, life expectancy strongly correlates

with deviation between the two entropy metrics, with long-lived species showing little bias and

short-lived species showing a stronger bias in the original Keyfitz metric.

2 Methods: Keyfitz entropy

2.1 Continuous-time formulas for Keyfitz entropy

Keyfitz (1977) (or the recent edition, Keyfitz & Caswell (2005)) defines the measure H of a survival

function l(a) at age a as

H = −
∫ ω
0 [log l(a)] l(a)da∫ ω

0 l(a)da
, (1)

and they note that H has been called entropy of information in other contexts (section 4.3 of Keyfitz

& Caswell (2005)). H, since then generally known as Keyfitz’ entropy, as defined above is a weighted

average of the logarithm of survival, where the weights reflect normalised survivorship. The use

of entropies and information theory has a long history in ecology and evolution (e.g., Shannon

biodiversity indices, Kullback-Leibler and Jenzen-Shannon divergence, and Max Ent distribution

modelling). Note, however, that Keyfitz’ entropy does not integrate to one and is therefore not an

entropy in the strictest sense (Shannon & Weaver, 1949).

Keyfitz & Caswell (2005) derived the formula by calculating the effect of a proportional change

in age-specific mortality on the life expectancy at birth, and the measure therefore relates to the

similarity of mortality across age-classes. As a result, Keyfitz’ entropy is also a measure of the

concavity of the survivorship curve. Goldman & Lord (1986), Vaupel (1986), and recently Vaupel

& Canudas-Romo (2003) showed that Keyfitz entropy can be decomposed into two constituent

measures that demographers use: 1. Life disparity, e†, which is defined as the average remaining
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life expectancy at the ages when death occurs, and measures the number of life years lost due

to death 2. Average lifespan of an individual at the time of birth, e0, which is calculated by

integrating the survival density function. The ratio of the aforementioned indices represents an

equivalent formulation of Keyfitz’ entropy:

H =
e†

e0
, (2)

whereby

e† = −
∫ ω

0
[log l(a)] l(a)da, (3)

e0 =

∫ ω

0
l(a)da. (4)

2.2 Discretisation of Keyfitz entropy

Salguero-Gómez et al. (2016) introduced a discretised version of Keyfitz entropy,

Hlx = −

∞∑
x=0

log(lx)lx

∞∑
x=0

lx

, (5)

see Table S2 from the Supplementary Materials of Salguero-Gómez et al. (2016). A few lines of

algebra will show that the continuous time version of Keyfitz’ entropy, equation (1) is equal to 1

when the mortality rate, µ, is constant such that l(x) = exp(−µx). The discretization in equation

5 (what we refer to as the original discret-time entropy measure) no longer has this property as can

be seen from the Keyfitz entropies in Table 1, calculated for three example survivorship curves in

Figure 1. In Supplementary Materials 1, we calculate the value of Hlx when mortality is constant

and show that it is a function of µ which approximates one as mortality gets close to zero.

2.3 An alternative discretisation of Keyfitz entropy

We propose an alternative discrete-time formula for Keyfitz’ entropy, derived from the definition

of Keyfitz’ entropy as the ratio of life disparity to life expectancy at birth (which we refer to as the

new discrete-time entropy measure). Starting from the fundamental matrix N (Caswell (2001), p.
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112), life expectancy at birth is defined as

e0 = 1TNe1, (6)

= ηT
1e1, (7)

where η1 is the vector of life expectancies at each age, 1T is a vector of ones, and e1 is a vector with

zeros in all entries except the first entry which is one (see for example Caswell (2013) or Caswell

et al. (2018)). Similarly, life disparity at birth can be calculated from the fundamental matrix N

and the mortality matrix M as

e† = 1TNMNe1, (8)

= ηT
1Be1, (9)

where the matrix B contains the distribution of age at death for an individual of each age, and

the vector Be1 selects the distribution of age at death for a newborn individual, see also equation

(57) in Caswell et al. (2018) or section 3 in Caswell (2013). Keyfitz’ entropy is then given by

HN =
1TNMNe1
1TNe1

, (10)

or equivalently by

HN =
ηT
1Be1
ηT
1e1

. (11)

In Supplementary Materials 2, we show that equation (11) yields a value greater than 1 when

mortality rate µ is a decreasing function of age, a value less than 1 when mortality is an increasing

function of age, and exactly 1 when mortality is constant.

2.4 Comparing the metrics in real species using the COM(P)ADRE databases

To compare how the two discrete-time entropy measures perform in the context of biologically

realistic models, we calculated entropies for age-structured matrix population models. We eval-

uated both animal and plant population models from the COMADRE (version 4.21.8.0) and COM-

PADRE (version 6.22.5.0) matrix population databases (both available from https://www.compadre-

db.org). The empirical comparison included 401 species animal matrix population models and 34

species plant matrix population models.

We initially screened the matrix population models in COMPADRE and COMADRE based on
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their inclusion in previous publications that used Keyfitz’ entropy (Bernard et al., 2020). These

models were selected based on duration of study, whether the population monitored was subject

to experimental manipulation, among other criteria. Within the abovementioned subset, we se-

lected unique records where duplicates existed based on maximizing study duration. We evaluated

whether models were age or stage classified and removed any records that included NA values in

reproductive elements or stage-specific survival values greater than unity.

For models from previous analyses that were stage-based (80 of 400 in COMADRE; 148 of

150 in COMPADRE), we converted them to age-based matrices. The stage-to-age transformation

was based on life table projections of the stage matrix (Jones et al., 2022). We constructed Leslie

matrices using survival vectors (px) and fertility vectors (mx) for ages within 90% of the starting

population size based on the survivorship curve (lx). We compared higher and lower thresholds of

the cohort size cut-off and found little variation in the number of viable age-specific analogues to

stage matrices. Age-specific models converted from stage specific models were validated to see if

the intrinsic population growth rate, reproductive rate, and generation time were consistent with

those of the stage matrix that generate the life table from which the age-models were calculated.

We only retained stage-based models where differences between stage and their age-equivalent

matrices were within 5% of one another along the above demographic metrics. In most cases the

differences were < 1%.

3 Results: bias of the existing metric correlates with longevity

To compare the original and new discrete-time entropy measures, in Table 1 we calculate the

entropy using both measures for a few example survivorship curves shown in Figure 1. Both

metrics change as the step size is changed. However, the new discrete-time entropy metric remains

on the same side of one, and therefore its classification of the survivorship curve as senescent,

non-senescent, or negative senescent (sensu Vaupel et al. (2004)) does not change. The original

discrete-time entropy metric, on the other hand, changes from above one to below one for the type

III curve.
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Figure 1: Three example survivorship functions of the three different types (type I: senescence;
type II: constant mortality; type III, negative senescence). The two Keyfitz entropy measures given
by equations (5) and (10)) are calculated for these three curves using two different widths of the
age classes, ∆t, are given below in Table 1. That is, we discretized the survivorship curves shown
in the figure using two different sizes of discrete intervals, ∆t = 0.01 and ∆t = 1.

Table 1: Comparison of the two Keyfitz entropy discretisations for the curves in Figure 1 for a
discrete time interval of ∆t = 0.01 and a discrete time interval of ∆t = 1. Keyfitz lx is given by
equation (5), and Keyfitz N is given by equation (10).

Entropy measure Keyfitz lx Keyfitz N

∆t = 0.01 ∆t = 1 ∆t = 0.01 ∆t = 1

Type I 0.33 0.30 0.33 0.44

Type II 0.96 0.75 1.00 1.00

Type III 1.85 0.76 1.94 1.18
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Figure 2A and 2C show how the original and the new entropy metrics are correlated for matrix

models from COMADRE and COMPADRE, respectively. The sparseness of data in the bottom

panels C and D for plants (COMPADRE) are a consequence of the fact that COMPADRE contains

largely stage-structured matrices which required a stage-to-age conversion as described in the

methods. We excluded models if the demographic quantities such as population growth rate

of the converted stage-to-age model differed from the original stage-structured models by more

than 5%, which led to many exclusions and therefore a sparser plot for COMPADRE than for

COMADRE (bottom two panels versus top two panels in Figure 2). As a consequence of these

exclusions, virtually no models from the original datasets analysed in Bernard et al. (2020) were

left. Therefore we included stage-to-age converted models from COMPADRE outside of the set

analysed by Bernard et al. (2020), shown in gray in panels C and D.

Entropy estimates of animals were correlated between the original discrete-time entropy mea-

sure and the new discrete-time entropy formulation, but expressed high variability. The origi-

nal entropy measure introduced a consistent bias of over-estimating senescence (78.6% of models

(264/336) had a greater New Entropy value than Original Entropy value). Bias was weaker at the

extremes (colinearly high and low values of entropy) with the strongest overestimation of senes-

cence occurring under the Original Entropy centered at the threshold value where New Entropy =

1 (Figure 2A).

Senescence was strongly underestimated when using the original discrete-time entropy metric

(Figure 2A), and also changed sign in a substantial number of cases (two blue surfaces in Figure

2A and C). Sign changed between the two shape measures almost exclusively in the direction of

weak negative senescence (small survivorship increase with age) interpreted as positive senescence

by the original entropy metric (decreasing survivorship with age; bottom right quadrant of Figure

2A)). Nearly 40% of models (126 of 336) inverted sign between the two entropy measures. Around

34% of the models were more than 0.25 units entropy in error, and 18% of models were more than

0.50 units entropy in error.

The distance between the two entropy metrics was correlated with life expectancy (Figure 2B

and D). For data from COMADRE (panel B), the mean error for models with life expectancy < 2

was -0.63, the mean error with life expectancy between 3-5 years was -0.15, and for 5-10 years it

was -0.06.

These findings have important implications for the recent and future waves of comparative

demographic research evaluating the number of species escaping or undergoing actuarial senes-
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cence (e.g., Salguero-Gómez (2017); Beckman et al. (2018); Capdevila et al. (2020); Bernard et al.

(2020)) because Figure 2A implies that these studies have likely underestimated the number of

species with negligible actuarial senescence using this Keyfitz metric, and Figure 2B implies that

this underestimation was especially strong for short-lived species, therefore introducing a spurious

correlation between shape and pace.

In Supplementary Materials 1 we show why the original discretisation, Hlx, classifies constant

mortality curves as negatively senescent curves, and why it does so more strongly for species with

shorter lifespans. We find that for constant mortality µ, Hlx = µexp(−µ)
1−exp(−µ) . This function is smaller

than 1 whenever the mortality rate is nonzero, i.e. when µ is larger than 0. Furthermore, µexp(−µ)
1−exp(−µ)

is a decreasing function of µ for nonnegative values of µ so that the original Keyfitz metric gets

closer to zero as the constant mortality gets larger and life expectancy gets shorter.
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Figure 2: Variation between the original entropy (Hlx) and new entropy (HN ) measures from
matrix population models of animals in the COMADRE database (panels A and B), and of plants
in the COMPADRE database (panels C and D). A) Comparing Keyfitz’ entropy of animal matrix
models from the COMADRE database using the original and new metric. Points in dark blue
are matrices where entropy shifted from negative values (positive senescence) to positive values
(negative senescence). Matrices converted from stage to age are shown in orange. B) Plot of the
difference between the new and the existing metric (HN −Hlx) as a function of the life expectancy
of animal species from COMADRE. C) Comparing Keyfitz’ entropy of plant matrix models from
the COMPADRE database using the original and new metric. Poins in grey are matrix models
that were not analysed in Bernard et al. (2020). D) Plot of the difference between the new and
the existing metric (HN − Hlx) as a function of the life expectancy of plant from COMPADRE.
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4 Discussion and Conclusion

We have shown that the commonly used time-discretized formula for Keyfitz’ entropy (referred to

here as the original entropy measure) does not preserve the relationship between Keyfitz’ entropy

and the shape of the survivorship curve that exists for a continuous-time definition of survivor-

ship entropy. That is, constant mortality curves do not yield a Keyfitz’ entropy of one, and life

histories with decreasing mortality will not always yield values above one (e.g., see Table 1). Fur-

thermore, the distance between the original and the new Keyfitz’ entropy metric correlates with

life expectancy (figure 2B). As a consequence, any correlations obtained between pace and shape

of life in previous publications using the existing Keyfitz metric may need to be reevaluated.

We propose a different formula for the discretisation of Keyfitz’ entropy (referred to here as

the new entropy measure), based on life disparity and life expectancy in Equation 10. We show in

Supplementary Materials 2 that this new formula does preserve the relationship between the shape

of the survivorship curve and Keyfitz entropy (that is, HN > 1 when mortality is a decreasing

function of age, HN < 1 when mortality is an increasing function of age, and HN = 1 when

mortality is constant). However, a major downside of the formula we have proposed is that it is

only a measure of the shape of ageing for age-structured survival matrices (Leslie matrices). If

the survival and population matrix are stage-structured, then the new entropy measure quantifies

whether mortality rate increases or decreases with stage. Stage-to-age conversion methods can

offer one way around this limitation to the method.

Due to the constraint of our proposed metric to age-structured matrices, it might in general be

better to use one of the many other shape metrics that have been proposed. For example, other life

table statistics that have been used to quantify the age-specific decline in survival include Hayley’s

median (Hailey, 1874); the age-dependent mortality parameter of mortality distributions (e.g.,

Gompertz, Weibull, Siler, Logistic, etc.; Ricklefs & Scheuerlein (2002)); the age at the onset of

senescence (Jones et al., 2008) and the integration of the remaining lifespan and survival function.

Wrycza et al. (2015) highlight a number of other potential candidates, such as a modified Gini

coefficient (reviewing 7 possible metrics), and highlight the value of the entropy as a measure of

a statistic of the shape of life (see also Aburto et al. (2021) for a recent discussion of measures of

lifespan inequality).

Keyfitz derived his continuous-time measure by considering a proportional change in mortality

at all ages (section 4.3 in Keyfitz & Caswell (2005)). We did not deduce our formula from this start-
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ing point, and instead used existing discrete-time expressions for the numerator and denominator

in the continous-time expression derived by Keyfitz. Therefore it remains to be shown whether

our new expression for H, HN in equation (10), can also be derived by following Keyfitz’ proof

and considering a proportional change in mortality at all ages in a discrete-time model.

Data accessibility statement

Code used in this paper can be found at https://github.com/Lotte-biology/Keyfitz.
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1 Supplementary Materials 1: Properties of existing Keyfitz en-

tropy discretisation

Constant mortality

We start from the definition of Keyfitz entropy given in equation (5) in the main text,

Hlx = −

∞∑
x=0

log(lx)lx

∞∑
x=0

lx

. (12)

Next we assume mortality is constant, µ, such that survival up to age a is lx = exp(−µx), and

Hlx =

∞∑
x=0

µx exp(−µx)

∞∑
x=0

exp(−µx)

, (13)

=
µ exp(−µ)

1 − exp(−µ)
, (14)

where we used the following two equations for power sums

∞∑
k=0

kzk =
z

(1 − z)2
, (15)

∞∑
k=0

zk =
1

1 − z
, (16)

for the numerator and denominator of equation 13, respectively.

In general, Hlx is therefore not equal to one for constant mortality. Note however, that as we

let µ get very small, a Taylor expansion of equation 14 shows that it becomes approximately one

in the limit of small µ. Integrals can be approximated by a series of sums with infinitessimally

small step sizes. In the limit of infinitessimally small time steps, survival becomes close to one

(or µ close to zero), and therefore the sum approximates the continuous time formula well in this

limit.
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2 Supplementary Materials 2: Properties of new Keyfitz entropy

formula

Constant mortality case

We start from the definition of Keyfitz entropy given in equation (11) in the main text,

HN =
ηT
1Be1
ηT
1e1

. (17)

When mortality is constant throughout life, then life expectancy is the same for each age. That

is, ηT
1 = c1T for some constant c. Equation (17) then becomes

Hd2 =
c1T

1Be1
c1T

1e1
, (18)

= 1T
1Be1, (19)

since 1T
1e1 = 1. The matrix B contains the distribution of age at death, or put differently, each

entry contains the probability of dying at that age. Since death is inevitable, the columns of B

sum to one. That is, for a constant mortality rate

Hd2 = 1T
1Be1 = 1. (20)

Increasing mortality rate with age

If mortality rate strictly increases with age, then life expectancy decreases with age, so the entries

of ηT
1 get smaller as you go to higher ages. That is, the first entry of ηT

1, which is the denominator

of Hd2, is larger than all other entries of ηT
1. The numerator of Hd2 is a weighted sum of the entries

of ηT
1, where the weights add to one. Given that the first entry of ηT

1 is larger than all other entries,

this implies that

ηT
1Be1 < ηT

1e1, (21)

which in turn implies that HN < 1.

Now we will briefly elaborate why the inequality above is true if the entries of ηT
1 get smaller

as you go to higher ages. Lets call the vector with the distribution of each at death for a newborn
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individual, Be1 = p. We can then write equation (17) as

Hd2 =
ηT
1p

η1
, (22)

where η1 is the first entry of the vector ηT
1. Written out in terms of its components this is equal to

Hd2 =

∑
i η

T
i pi

η1
, (23)

For the case of increasing mortality rates, we know that η1 > ηi for all i > 1. Therefore,

η1pi > ηT
i pi, for all i > 1 (24)

which implies that ∑
i

η1pi >
∑
i

ηT
i pi, (25)

and therefore that

η1 >
∑
i

ηT
i pi. (26)

Decreasing mortality rate with age

If mortality rate strictly decreases with age, then life expectancy increases with age, so the entries

of ηT
1 get bigger as you go to higher ages. That is, the first entry of ηT

1, which is the denominator

of Hd2, is smallest of the entries of ηT
1. The numerator of Hd2 is a weighted sum of the entries of

ηT
1, where the weights add to one. Given that the first entry of ηT

1 is smaller than all other entries,

this implies that

ηT
1Be1 > ηT

1e1, (27)

which in turn implies that HN > 1.
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